2411.18593v1 [cs.DC] 27 Nov 2024

arxXiv

CKkIO: Parallel File Input for Over-Decomposed
Task-Based Systems

Mathew Jacob, Maya Taylor, Laxmikant Kale
University of Illinois at Urbana-Champaign
{mkjacob3, mayat4, kale}@illinois.edu

Abstract—Parallel input performance issues are often neglected
in large scale parallel applications in Computational Science
and Engineering. Traditionally, there has been less focus on
input performance because either input sizes are small (as in
biomolecular simulations) or the time doing input is insignificant
compared with the simulation with many timesteps. But newer
applications, such as graph algorithms add a premium to file
input performance. Additionally, over-decomposed systems, such
as Charm++/AMPI, present new challenges in this context in
comparison to MPI applications. In the over-decomposition
model, naive parallel I/O in which every task makes its own I/O
request is impractical. Furthermore, load balancing supported
by models such as Charm++/AMPI precludes assumption of data
contiguity on individual nodes. We develop a new I/O abstraction
to address these issues by separating the decomposition of
consumers of input data from that of file-reader tasks that
interact with the file system. This enables applications to scale
the number of consumers of data without impacting I/O behavior
or performance. These ideas are implemented in a new input
library, CKIO, that is built on Charm++, which is a well-
known task-based and overdecomposed-partitions system. CKIO
is configurable via multiple parameters (such as the number of
file readers and/or their placement) that can be tuned depending
on characteristics of the application, such as file size and
number of application objects. Additionally, CKIO input allows
for capabilities such as effective overlap of input and application-
level computation, as well as load balancing and migration. We
describe the relevant challenges in understanding file system
behavior and architecture, the design alternatives being explored,
and preliminary performance data.

Index Terms—Over-decomposition, I/O

I. INTRODUCTION

I/0-bound tasks are important throughout high performance
computing, from writing the current state of the program to
disk during a checkpoint or reading in particle data to start a
large simulation. Party due to the disk and file systems being
orders of magnitude slower than the rest of the system, these
I/O tasks often become a bottleneck. Thus, many researchers
have focused on optimizing I/O to improve application per-
formance. This existing research, however, tends to focus on
optimizing the output performance rather than the input, and
traditionally input performance hasn’t been a major concern
[13] [16]. For modern workloads, however, input performance
is becoming increasingly important. Programs, such as graph
applications, typically run for relatively short time, and may
be time-critical, increasing the importance of fast reading
time. Even for large-scale iterative scientific applications, such
as N-body astronomy simulations, which can run for hours,
completing many iterations and time steps, performance tuning

at scale requires short runs with only a few timesteps; in
these situations, poor input performance becomes a pressing
concern.

Asynchronous Many-Task (AMT) systems, such as
Charm-++ [[11]], HPX [10], as well as the task-based implemen-
tation of Legion [3]], decouple the input decomposition from
the number of processing elements (PEs). This decoupling
allows for overdecomposition, meaning that multiple parallel
tasks can be assigned to a single PE, and the runtime is
responsible for making these assignments. Overdecomposi-
tion, combined with adaptive dynamic scheduling of tasks
depending on availability of data, can improve performance
by increasing the overlap of computation and communication
in a program. However, in the context of I/O, this overde-
composition can degrade performance substantially if it is not
tuned to the file system. This phenomenon is illustrated via
the following experiment. We use the term clients to refer to
the overdecomposed tasks that perform I/O. In this experiment
each client directly (i.e. by making in individual file system
call) reads a disjoint section of a single input file; we use
3 different file sizes and vary the number of clients while
keeping the number of nodes and PEs constant as we measure
the throughput (i.e. the file input rate, higher the better). For
each [filesize,number-of-clients] configuration, we repeat the
experiment multiple times because of observed variability, and
indicate the extent of variability by the vertical bars. The
results plotted in Figure [I] show that the input performance
is significantly dependent on the number of clients: if the
number of clients is too small, performance suffers because the
program misses opportunities for parallelism in disk accesses,
and if the number of clients is too large, the file system is
congested by many small read requests.

Yet, from the application developer’s perspective, the num-
ber of clients should not be constrained by the optimal I/O
decomposition. The user will choose the number of clients
per PE (overdecomposition factor) based on what is optimal
for the computational phases of a given application; E.g. in
ChaNGa, a computational astronomy application, it is common
to see 16 objects per core [8]. So, an important issue for
I/O performance in overdecomposed programming models is
how to allow the user complete freedom over their application
decomposition and the number of clients, while supporting
consistent, optimal I/O performance. This is the first issue this
paper addresses.

Additionally, to retain the performance benefits of the data-

¢ 4GB
3000 512MB
B ¢ 16MB
% |
= 20004 $
=
= }
=
on
=
g 1000 T +
5 ¢
¢ o o ¢
01 ° L e ° ° ° °
28 210 12 14 16

Number of Clients

Fig. 1: Naive overdecomposed input in Charm++. Results were
produced on Bridges2 using 16 nodes and 512 PEs, where each
data point denotes an average over 10 runs.

driven task-based execution model, it is important to ensure
that I/O operations and unrelated tasks can be scheduled
together. At the same time, tasks that do depend on specific
input data should be enabled (i.e. marked ready for scheduling)
as soon as the data is available. This requires supporting
non-blocking split-phase interfaces for I/O operations, where
triggering of each input call is separated from its completions
and the continuation of dependent tasks.

Futhermore, in overdecomposed systems such as Charm++,
tasks are able to migrate across processors/nodes during exe-
cution. A task may open a file on one node, read some initial
data and then get migrated to another node, where it continues
to read from the same open file handle, further complicating
I/O in this context.

To approach the issues described, we begin by noting that
on modern parallel clusters, reading data from disk is an
order of magnitude slower than moving that same data across
nodes within the parallel computer. This is substantiated by
experimental data shown in Figure [2, which shows the perfor-
mance contrast between reading different file sizes from the
file system and transmitting that same data over the network
from one task to another. This experiment used 2 Regular
Memory (RM) nodes on Bridges2 [3], each with one task per
node. To measure the I/O latency, one task read in the entire
file. To measure the network bandwidth, one task sent the data
from the file over the network to another task on a different
node. This experiment illustrates that transmitting the same
data over the network can be over 6x faster than retrieving that
data from the file system in task-based systems on parallel-
computing clusters. This allows us to consider solutions where
data requested by a client on one processor can be read from
the file system by another processor on another node.

We design CkIO, an input scheme for over-decomposed,
task-based systems, based on two-phase I/O [7]]. CkIO intro-
duces a configurable intermediary layer of objects between
the file system and application tasks. The intermediary tasks
themselves use asynchronous input via helper pthreads to carry
out reads for large aggregated chunks of data, and then fulfill
requests from application tasks by sending the corresponding

Average Read Time and Data Permutation Time by File size

—e— Read Time
Permutation Time

12

1.0

0.8

Time (seconds)

0.2

0.0

200 400 600 800 1000
File size (MB)

Fig. 2: This graph compares the time to read data from the
filesystem and sending that data across nodes. The x-axis
denotes the size of the file being read and sent over the
network, while the y-axis is the time.

data over the interconnects, which are much faster than the I/O
subsystems on most parallel computing clusters. Additionally,
our API design as well as its implementation allows for effec-
tive overlap of the I/O and computational work of applications.
We implement this scheme in Charm++, an asynchronous task-
based parallel programming framework [[11].

This paper makes the following contributions:

e A new approach for optimizing file input performance
in over-decomposed task-based systems. One key idea is
designate a subset of tasks to greedily read in a read
session, which is a user-specified section of the file that
the user will read in a given phase, asynchronously.
Combined with an “asynchronous callback architecture,
described in the paper, this effectively overlaps I/O with
non-dependent computation, while still achieving the best
raw input throughput.

« An open source implementation of the approach in CkIO,
a parallel input library for overdecomposed systems, as a
part of Charm++.

o« We show that CKkIO achieves performance competitive
with MPI I/O even when no overdecomposition or task-
based scheduling is involved and achieves superior per-
formance in their presence, via input aggregation and
overlap of both application-level computation and I/O.
We demonstrate this by integrating CkIO into ChaNGa,
an N-body gravity simulator, where CkIO provides over
a 2x speed-up, compared with the hand-optimized I/O
code that ChaNGa previously used.

o We demonstrate that our scheme supports migratability in
I/0, i.e. allows persistent tasks (chare objects) to migrate
across nodes while holding an active file handle and
continuing read operations from multiple places.

II. BACKGROUND
A. Overdecomposition

Overdecomposition breaks up a program into many smaller
domains, often in the form of units of data and work or
computation. This subdivision is independent of the number
of processors being used, and separates the work done by the
application from the actual hardware of the resources used
to run the application. This gives the runtime the ability to
schedule computational work as it sees fit, which often leads
to high performance via automatic optimizations, that would
otherwise be challenging for a programmer to achieve. This
programming paradigm also allows for the runtime to overlap
computation and communication, which further improves the
performance of overdecomposed applications.

A related category is task-based systems, or systems that
support message driven execution. They exhibit similar fea-
tures and require similar support for parallel I/O. Notable such
systems including Legion [3]], HPX [10], and StarPU [?2].

B. Charm++

Charm++ is a task-based, parallel programming framework
that enables overdecomposition and other related optimiza-
tions, such as dynamic load balancing [11]. A Charm++
program is decomposed into work units called chares.

1) Chares, Chare Arrays, and Groups: Chares are the fun-
damental building block of a Charm++ program. These chares
are C++ objects that the runtime assigns to processors in a
system. A chare encapsultes its own data, and is only allowed
to access and update its own data, although it can access global
readonly data and can hold handles (proxies) to other chares.
These handles can be used by chares to send messages to
other chares in the form of asynchronous method invocations.
It gives rise to a series of atomic (i.e non-preemptible) tasks
associated with its owned data based on dependencies on
messages sent to it, as well as program order dependencies.
(For brevity, we sometimes refer to a chare itself as a task or
“persistent task™). A chare array is an indexed collection of
chares that is distributed across the various processors under
the control of the Charm++ runtime system. The elements
of chare arrays can be migrated across processors and nodes
dynamically, which supports dynamic operations such as load-
balancing. A chare group is a collection of chares such that
there is exactly one chare per processor. The chare groups are
typically used for system functionalities and services such as
file input. Other chares on a given processor can access a chare
group member on that processor via a direct sequential object
pointer, without the need to employ asynchronous method
invocations.

2) Asynchronous Message-Driven Execution: The asyn-
chronous method invocations meant for the chares are the tasks
that are scheduled by a user-space scheduler in Charm-++ run-
time. Some tasks may also represent user-level (run) threads
associated with a chare that are ready to execute. Charm++
follows an implicit and asynchronous execution model, where
there is no explicit guarantee on the ordering of message

execution. This simply means that the runtime is free to select
any of the ready tasks for execution at each scheduling point.
As a corollary, no task is allowed to block the processor, and
execution proceeds based on availability of data. This allows
the runtime to have more freedom when scheduling work and
can allow for greater overlap of computation and commu-
nication, which results in greater speed ups of application,
especially in an over-decomposed application.

Our parallel input scheme caters to the file input requests
coming from elements of chare arrays as clients (which are
primary constructs used by applications); Further, our library
also leverages chare groups and chare arrays as implementa-
tion mechanism to support our design goals.

C. Related Work

There is a significant body of research on parallel input and
output, both in the context of MPI as well as some task-based
systems.

In the MPI framework, the MPI-IO library supports both
parallel input and output for high-performance computing
(HPC) applications [16]. MPI-1O provides an interface for col-
lective, two-phase I/0O and supports non-blocking variants of
I/O operations; asynchronous reads, for example, are supported
via the MPI_File_iread_at API. However, given the structure
of MPI programs, it can be difficult to use this interface
to effectively overlap different computation and I/O in MPIL.
MPI also lacks support for pre-fetching during file input, and
doesn’t handle migration or over-decomposition.

Legion [3] is a parallel programming system with a task-
driven runtime and support for data-driven task graphs. Within
Legion, 1/0 tasks are handled by the Iris system [9]. Iris
aims to hide the latency of I/O operations by creating an
abstraction known as external resources, which is meant for
resources outside the life of the program, such as files. Legion
also provides semantics that have different rules regarding
who can modify/have access to certain regions, allowing for
optimizations such as creating a local copy to avoid many disk
accesses. Iris supports concurrent computation and I/O via a
deferred execution model in which the Legion runtime aims
to overlap communication and computation when possible.
However, to the best of our knowledge, Iris does not support
input optimization via aggregation and collective I/O calls,
which can result in better raw I/O performance on file systems
of parallel computing clusters. Another important distinction
between Legion/Iris and CkIO is that we support input in pres-
ence of object (task) migration across nodes, which is essential
for systems such as Charm++ which rely on migration for
runtime adaptivity.

Previous work includes support for parallel output in
Charm++ [13] File output is typically simpler than input
(although more important) because there are typically no
computational tasks that are dependent on completion of file
output. When there are buffer dependencies (i.e. the source
buffer for file output needs to be reused after output is
complete), they can be settled by lax time-step barriers.

Another category of research focuses on separate file 1/O,
wherein every process or I/O participant operates on a unique
file. This approach is commonly seen in MPI programs and is
supported by MPI-IO. Our focus in this paper is on situations
when all relevant data is in a single large file, to be collectively
read by a collection of tasks.

Hierarchical data format (HDF) and other data compres-
sion variants are commonly used in HPC applications and
supported by many I/O frameworks [12]. These are also out
of scope for our work. We assume a sequential organization
of data in the file, which is typical for many applications such
as computational astronomy and graph algorithms. We believe
that the concepts and techniques of this paper can be used for
reading HDF files as well.

III. RATIONALE, API AND DESIGN

We recap and elaborate on the motivations we discussed
in the introduction, to provide guideline and rationale for our
design.

Since overdecomposed systems have a large number of
persistent tasks (client chares), doing explicit input from each
is inefficient. So we need a designated set of I/O agents (chares
in a chare array) for actually performing I/O, separate from
the application tasks. The size of this chare array (i.e. number
of 1/0O agents) should be selected independent of the number
of client chares.

If the file operations were to begin just when the application
needs input data, our ability to overlap useful work with file
input will be limited. Instead, our design must allow pre-
fetching of file data to the extent possible.

Task-based systems require that a processor is never blocked
on any operation, although individual tasks may block on
their data/message dependencies. If CkIO operations or any
component activity blocks the whole processor, it will lead
to unacceptable performance loss and possible correctness
issues due to loss of progress guarantees. So, we must support
concurrent background work, allowing applications to stay
active while I/O completes, effectively overlapping the I/O
time with useful computations.

Object migration is a key feature of Charm++, responsible
for many of its advantages. CkIO must support the ability
for the application to migrate tasks across processors, while
holding the file and session handles they opened earlier.

A. Read Session

We introduce the concept of a read session in order to create
a separate set of chares as file reading agents, and to allow
pre-fetching of file data. The read session is a component
of the CkIO API; it must be initialized before any read
operations begin. This is distinct from opening of a file. Given
an open file, a read session is started by all the client objects
collectively, providing a heads-up to the system about which
portion(s) of the file each client plans to read. A read session
call specifies the file handle, start byte, and end byte of a
single file that the client will eventually read from via one
or more read requests. Given this initial information, CkIO

greedily reads in the input data for the section of the file that
is relevant to the application. This greedy reading of data is
one feature that allows for the overlapping of the I/O with
other application level computation and messaging, which will
be described in more detail. In addition, when files cannot fit
into memory, the read session concept allows the user to read
the file chunk-by-chunk (one chunk per session), where each
chunk can fit into memory.

Additionally, because the selective pre-fetching maintains
the data in memory, this I/O schema is amenable to other forms
of parallelism, such as pipeline parallelism. Briefly, imagine a
program in which every worker is required to performs some
computation on large file in a block-cyclic fashion. That is,
if there are m workers, the it" worker will be assigned the
4t block if j =4 mod n. Also assume that a worker must
complete the work of one element before consuming their next
element. Because the reads in our scheme are non-blocking,
with a split-phase callback interface, and can be scheduled
by the runtime, the worker can issue the read request for
the next element before executing the work for their current
element. This can be accomplished by using a series of read-
sessions, one for each segment of the file corresponding to n
workers’ blocks. This allows for the read to commence while
the worker is doing its computation, effectively overlapping
communication and computation.

B. Independent decomposition of file input tasks and applica-
tion tasks

The basic idea behind the CkIO software architecture, which
helps it accomplish its goals of supporting overdecomposition
and migratability, is the separation of file input decomposition
from application decomposition via a two-phase input imple-
mentation. Our library aims to support application developers
with performant file input regardless of how they chose to
over-decompose their application. To do this, CkIO uses an
intermediary chare array responsible for actual file input,
called the buffer chare array, which sits between the file system
and the application chares, or clients. Figure |3| shows how the
layer of buffer chares abstracts the interaction with the file
system from the application.

The buffer chares read disjoint sections of a file that an
application will need. The number of buffer chares should be
configured by the application (or chosen by the system) to
decompose the file-system interaction optimally, depending on
a number of factors including the number of PEs, number of
nodes, and amount of data to be read. When a client requests
data via the CkIO infrastructure, this request is forwarded to
and handled by the buffer chare responsible for the relevant
data.

By introducing this intermediary layer that sits between the
clients and the file system, the actual input performance of
reading the data from the file system can be optimized re-
gardless of the client decomposition. This two-phase structure
incurs the overhead of additional interconnect data transfer
from buffer chare to client, but because the interconnects on
most supercomputing clusters are much faster than the /O

(a) Naive Parallel Input

(b) CKIO Input with Buffer Chares

Fig. 3: Schematics of (a) naive parallel input vs (b) input with
CKIO. In the naive implementation, application chares interact
directly with the file system. With CkIO, a layer of buffer
chares is used to abstract the file system interaction away.

disks, the improved input time much outweighs any network
cost. Figure] shows how CkIO can provide consistent perfor-
mance regardless of application decomposition, by choosing
the number of intermediate chares appropriately.

C. Software Architecture and Implementation

CkIO’s input API is built upon the existing CkIO output
API in order to both have synergy in design between input
and output, but also to make it familiar to users of the CkIO
output API if they want to integrate CkIO input into their own
program.

While reading the descriptions below, please note that a
chare is a message-driven object, and a chare group is a
collection of chares with exactly one chare per processor.
Chare groups are used to implement application-wide capabil-
ities, such as load-balancing, message aggregation, and in the
current case, parallel input. A chare group allows client objects
on an individual processor interact with its local member,
whereas the chares within the group (spread across processors)
cooperate to provide the capability.

1) Director Chare: The director chare coordinates the
actions of the PEs early on in the CkIO input process. When
a read session is started, the director broadcasts a message,
indicating that a new session has started, to the Manager
group, which will be discussed in more detail below. If global

¢ Naive Input
101 ¢ CKIO with 29 Buffer Chares

) H
+
Mmi *

¢ ¢t b te

26 29 ol2 ols
Number of Clients

Runtime (sec)
[=))
-

(S8}
——

Fig. 4: Performance of naive parallel input (where each client
directly makes file-system calls) vs input with CkIO reading
from a single 4GB file on Bridges2 (16 nodes, 32 tasks per
node). As the number of clients vary, CkIO provides consistent
performance comparable to the optimal input performance.
The vertical bars indicate variability due to file system and
compute node contention.

coordination (e.g. sequencing between multiple read sessions
of distinct files, to reduce contention in file-system access) is
needed, it can be performed by the director chare.

2) Manager Group: The manager is a group that is shared
with CkIO’s output. It is responsible for maintaining a ta-
ble, mapping each read session to a ReadAssembler group
(described in more detail below). Additionally, the manager
is responsible for assigning the tags for the zero-copy data
transfer used when transferring the data from buffer chares to
the clients. This process is described in further detail in the
following section.

3) ReadAssembler Group: The ReadAssembler is a group
that is responsible for fulfilling the read requests made to the
CKIO input library. All the read requests from the clients on
a given processor are forwarded to the single ReadAssembler
chare object responsible for that PE. Note that each request
may require fetching the data from multiple buffer chares in
the general case, although given the degree of overdecom-
position, it is likely to be limited to just 1 or 2 consecutive
buffer chares. The assembler’s job to issue the request to the
required buffer chares and as the data arrives, to assemble it
in the buffer. When a request is fulfilled (i.e. all its pieces
have arrived from the buffer chare), it triggers a user-specified
callback to continue execution of the read client. This is
described in more detail in subsection

4) Buffer Chares: As mentioned in section 3B, buffer
chares are the chares that interact directly with the file system
and read the file into memory, later to be served over the
network. Each buffer chare reads a disjoint section of the
file. The number of buffer chares is selected manually by the
programmer, based on variables like the file system, file size,
and the number of nodes. This is what allows the programmer
to optimize the input performance of their application without
changing the number of clients. Figure [3b] depicts how buffer
chares fit into the input model.

,________-

<
o
S
D

Q
®
T

File System

Fig. 5: Diagram of the CkIO system architecture. Note that the Buffer Chares begin reading on session instantiation, without
waiting for client requests. Additionally, the ReadAssemblers are created on instantiation but are not yet active.

To overlap file input with application computation, CkIO
performs non-blocking reads. For each buffer chare, we spawn
a new OS-level thread whose sole responsibility is to read
the section of the read session its buffer chare is responsible
for. This will allow the application to continue while the I/O
from the buffer chare is being completed. If a read requests
occurs before the I/O is completed, that read request will
simply be buffered until the I/O is finished; afterwards, the
read request will be fulfilled by doing a zero-copy operation
to the requesting client’s ReadAssembler. We also note that,
since the spawned thread is only doing I/O, it will not hinder
the performance of the application code.

The overall system architecture is visualized in Figure [3
The relationships between these different component when
a client issues a read request to the system is visualized in

Figures [6a] and

D. Asynchronous-Callback-centric API

The CKIO input API is designed to allow the Charm++
runtime system to have enough freedom to schedule work opti-
mally. This is accomplished by using asynchronous callbacks,
or chare object continuations, which are a well-supported
feature in Charm++. When such as callback is invoked, the
system only enqueues the corresponding function or method
invocation as a fask on the the specified processor. Combined
with the user-space task-scheduler at the heart of Charm++
runtime, this ensures no I/O call blocks an entire processor.
Below, we briefly describe the base CkIO input API that
programmers can leverage to get the best input performance
in their application.

e Ck::I0::0pen(std::string name,

CkCallback opened, Ck::I0::Options
opts) - is used by the user to open a file handle in

CKIO. The opts variable is a struct that has different
fields that can be configured to change how the file
is prepared, as well how the user wants subsequent
operations to be conducted. For input, the user will be
utilizing the Ck::10::Options::numReaders field, which
tells CkIO how many buffer chares to use when opening
a read session with the file. When all the managers are
prepared to handle the file, the user-specified opened
callback is invoked, returning a message containing a
Ck::10::File handle to the user.
Ck::I0::startReadSession (Ck::I0::File
file, size t bytes, size t offset,
CkCallback ready) - used to initiate the prefetch
of a section of a seekable file into memory by making the
buffer chares read bytes bytes, starting from the start_byte
byte in the file. The file input itself is asynchronous,
allowing for it to be overlapped with computation, as
described later. Once all the buffer chares have finished
initiating their read, the user specified ready callback is
invoked to return a Ck::10::Session handle to the user.
Note that with this asynchronous callback, the system
is free to execute other computational work from the
time the call is made to the time the session handle is
returned.

Ck::I0::read(Ck::I0::Session session,
size_t bytes, size t offset, charx
data, CkCallback after read) - This is the
function by which application chares will read, giving
CkIO an offset and number of bytes with respect to
the overall file the session corresponds to. The data
will be stored in data, which is buffer passed in by the
user. When the read is complete, CkIO will invoke the
user-specified asynchronous callback after_read with the

; \
/ Client 1
1

_BC“‘I/
—

[Read Assembler]

\ Data Buffer S

—— = ———

(a) When a client submits a read request to CkIO, this message first passes to the client’s local manager. The manager broadcasts the request

to all Buffer Chares.

/
Client
\

Read Assembler]

—— o —————

(b) After receiving a request, Buffer Chares contribute their relevant data to the Read Assembler on the Client’s PE. The Read Assembler
assembles received data in a buffer and then passes this to the requesting client.

Fig. 6: Outline of the communication involved when CkIO receives a request from a Client.

result. This callback is typically a method in the client
chare object, which is scheduled as an asynchronous
task. L.e. when the input data is available, a task is only
enqueued in the system’s task queue for the continuation
of application logic that depends on this specific read.
Thus, until the input data is available, the system can
continue scheduling other computational tasks.

o Ck::I10::closeReadSession (Ck::
read session, CkCallback after end) -
This allows the user to clean up the buffer chares and
the memory associated with read_session on all the

manager chares. Once this is done, the user specified
after_end callback is invoked.
Ck::I0::close(Ck::I0::File file,
CkCallback closed) - Closes the file across
all of the PEs.

IV. EVALUATION

:I0::5ession A. Micro-benchmark Evaluation

In this section, we utilize three different microbenchmarks

in order to evaluate different aspects of CkIO’s design. Section
evaluates CkIO on a real world cosmology application.

104 —e— 32BC/Node
' 64BC/Node
_0s8] —e— MPI
2
g 061
£
=
& 0.4
0.2
20 21 22 23

Number of Nodes

Fig. 7: Comparison between MPI-IO and CkIO (with 32 and
64 buffer chares per node) reading a 1GB file with 32 ranks
per node on Bridges2.

All of these experiments were executed on the Bridges2
supercomputer at the Pittsburgh Supercomputing Center [5]],
using the RM nodes. These nodes have 256GB RAM, use
the Mellanox ConnectX-6-HDR Infiniband 200Gb/s Adapter
as the network, and use Bridges’ Lustre PFS, Ocean [3].

1) Disjoint reads: MPI vs CklO: The goal of this ex-
periment is to see how CKIO raw input performance scales
compared to other standard HPC I/O frameworks, namely MPI
I/O. In this experiment, there is a basic MPI I/O program and
a Charm++ program that uses CkIO. In the MPI I/O program,
each rank uses collective input to read equal, disjoint chunks of
an input file. This is similar in the CkIO program, where there
is both 1 buffer chare and client chare per PE. Figure [/| shows
a direct comparison between the two I/O implementations. For
the MPI I/O benchmark, we used OpenMPI’s collective input.

We see that CkIO input does remain better than OpenMPTI’s
collective input from 1 to 8 nodes, with 32 PEs per node, on
average. We also note that because of how easy it is to tune
the number of buffer chares in CkIO, a user can easily tune
their I/O to get the best performance at any scale.

2) Computation Overlap: In a task-based system such as
Charm++, it is desirable that, when tasks performing file input
(input tasks) are in progress, other tasks that are not dependent
on the input tasks be allowed to proceed concurrently. To
evaluate the ability of CkIO to efficiently overlap computation
with file input, we use two distinct metrics: (1) the impact
of computation/input overlap on total runtime, and (2) how
much background work can be completed during the duration
of the file input. The first benchmark (Figure |8)) compares the
total runtime of the naive file input to file input with CkIO,
with and without a fixed amount of background computation.
The background work consists of one chare on each PE
that iterates over a fixed-duration loop with approximately
10 microseconds of computation per iteration. At the end of
every iteration, each chare in the group yields control to the
Charm scheduler, giving the runtime a chance to check if the
I/O has completed. The execution is completed when both
the specified iterations of background computation work are
finished and I/O is complete.

0 T T T ¥
CKIO (no BG) CKIO (BG) Naive (no BG) Naive (BG)

Fig. 8: Runtime comparison between CkIO input and naive
Charm-based input, with and without fixed background work.
Results collected on four nodes of Bridges2, with two cores
per node and eight PEs total. Each experiment involves eight
clients and eight buffer chares. All approaches read a 1GB
file and the data points with background work launch a
chare group to perform a fixed amount of background work
(hatched) concurrently. Each data point denotes the average
recorded runtime over 3 runs.

92%

%
90% 89% 88% 87% 83% 83% 81% 789,

0.05 1

0.00

I 2 4 8 16 32 64 128 512 1024

Number of Clients
Fig. 9: Execution time and percentage of time spent on
background work during a read. These results were collected
on 4 nodes of Bridges2 with 2 cores per node (8PEs total),
using 8 Buffer Chares.

In the naive implementation of file input, chares read
directly from the file system and block their respective cores
in the process, delaying the background computation. This is
visible in Figure [8) where the naive benchmark runtime more
than doubles when background work is added, compared to
the baseline with no background work. In the same situation,
CKkIO is able to overlap input and computation such that a
large percentage of the overall runtime is spent in background
work, and the runtime only increases slightly when concurrent
background work is added.

To further analyze exactly how much overlap is achieved,
consider a similar benchmark: we create a chare array A and
chare group B. A is responsible for reading in the entire file,
while B is responsible for doing background work until A
has finished reading the file. This is then used to measure
what percentage of the time A spent reading the file was

used by group B doing background work. Figure [J] presents
the results. We see that up tol1024 clients (64 clients per
PE), over 75% of the input time is utilized for background
work. Beyond that, the extra work of managing I/O for many
clients starts impacting the background work fraction. This
is due to the fact that each of these clients sends a request
to a given buffer chare, and a buffer chare then handles all
requests serially. This increased message congestion eventually
limits the runtime’s ability to schedule background work. Since
typical applications use fewer than 64 chares (clients) per PE,
this performance is adequate. In future work, it would be
interesting to experiment with different threading and buffering
strategies to further increase this overlap.

3) Migratability: Charm++ allows its tasks (i.e. the chare
objects) to migrate across processors under the control of
an adaptive Runtime System (RTS). The RTS may migrate
objects around for dynamic load balancing, for energy op-
timization [I]], for supporting resource elasticity in cloud
environments, or for tolerating faults. The question arises: if
a chare has opened a file, started a read session and then
does a series of read operations within that session, but is
migrated to a different processor/node between two reads,
what happens? We support this scenario by using the virtual
proxy for the client, a mechanism Charm++ supports, in the
callback for the read (instead of the processor or process rank).
With the object location management supported by Charm++,
this ensures that new read requests arising after migration are
correctly supported.

We use an experiment to both demonstrate the support for
object migration, as well as a potential locality enhancing
optimization carried out by the application: On two nodes,
we have 2 PEs, where PE 0, or py is on node 0, or ng, and
PE 1, p1, is on node 1, ny. The user will use 2 buffer chares,
by and by, respectively, to read in the data from an input file.
The application will also have two client chares, ¢y and c;,
respectively. At the start of the program, by and ¢ resides on
po, while b; and c; resides on p;. During the program, cg
requests the data that belongs to by, and c; requests the data
that belongs to by. Notice that the data wanted by each of the
clients happens to live in the opposite node. We then migrate
the clients such that each client moves to the other PE and then
conduct an identical-size read, this time with the data residing
on the same PE as the requesting client. Figure [I0] illustrates
the state of the experiment before migration, and [T1] visualizes
the state and actions of the experiment after migration.

The fact that the program carries out input correctly demon-
strates our support for migratability. To study the impact of
locality, Figure [T2] illustrates the difference in read speed
before migration and after migration as we scale the file size.
We plot the largest read time between ¢y and c; as the time
taken for ¢y and c¢; to read in their data. As the file sizes
increase, we can see that the disparity between pre-migration
read times and post-migration read times increases as well.

This experiment also illustrates the design freedom CkIO
provides to the application. Once the read session data has
been read, if the amount of data is large and state of the

Fig. 10: Diagram of the start of the experiment. The arrows
indicate that the clients want data belonging to buffer chares
on different nodes which will take longer to retrieve.

Fig. 11: Diagram of the migration experiment after a migration
has taken place and the clients want to read data. Now that
migration has taken place, both the corresponding client and
buffer chares are on the same PEs, which means the request
no longer has to cross the node boundary.

client chare is small, it may make sense to ’send the work to
data” as this experiment does. This migration may continue to
benefit over subsequent read sessions as well, if the division of
data is similar. At the same time, the runtime system is free
to migrate chares during the later computational phase(s) if
that is beneficial for load balance. Whether migration during
Input as done here is beneficial for the application depends on
many application-specific factors; so it is important that CkIO
provides this option.

B. Evaluation on ChaNGa

ChaNGa (Charm N-body GrAvity solver) is a Charm++-
based cosmology code for collision-less N-body simulations
. For 1/0, ChaNGa uses the Tipsy file format, a format
designed specifically for cosmological N-body simulations
[14].

ChaNGa is implemented using a Barnes-Hut tree composed
of a chare array of “TreePieces”. The simulation space is
divided up so that each TreePiece is responsible for a subset
of particles. During the initialization phase of the algorithm,
TreePieces collectively read disjoint sections from a single
input file corresponding to the initial allocation of particles
to TreePieces. After completing the input phase, TreePieces
are then responsible for driving the Barnes-Hut computation.

Users can specify the number of TreePieces at runtime and
will likely choose to over-decompose the problem, creating

Time for read pre-migration vs post-migration

@ pre-migration read time []
post migration read time
0.08 A
_0.06 1
(%)
©°
c
o
(V)
(]
)
o 0.044
£
£
0.02 °
[]
0.001 @
2 3 4 5 6 7 8 9 10

log(number of megabytes of file)

Fig. 12: The performance difference in read times before vs
after the migration of the client chares. The x-axis corresponds
to the log of the number of megabytes of the input file i.e
10 corresponds to a 1024MB file. This experiment used two
regular-memory nodes, 1 PE per node from Bridges2.

many more TreePieces than there are physical cores. While
this over-decomposition will benefit computational efficiency,
naively performing file input from each TreePiece can cause
file system contention and unsatisfactory input performance -
precisely the concern CkIO aims to address.

To mitigate this issue, the ChaNGa developers initially
implemented a custom, application-level, collective input
scheme. This involves additional code to select a subset of
TreePieces (specifically, one per PE) to perform file input
and later redistribute particles to all TreePieces. Each of these
input-designated TreePieces creates a TipsyReader object to
read from the Tipsy input file and reconstruct the simulation
particles. The TipsyReader is implemented using the C++ stan-
dard std::ifstream to read from the input file via a streaming
APL

We integrate CkIO into CHaNGa, subsuming the manual
optimizations written by the ChaNGa developers with CkIO,
providing modularity and separation of concerns. In practice,
this involved first modifying the TipsyReader implementa-
tion to utilize CkIO instead of standard C++ I/O. Secondly,
we modified the ChaNGa code-base to replace the custom
logic designating select reader TreePieces with CkIO. CkIO
supports the logical view that each TreePiece participates in
the file input, while making it easy to tune the number of
intermediary readers for the workload.

The performance difference of CHaNGa using hand-
optimized I/O code compared to using CkIO is illustrated in
Figure [134] in addition to a baseline of ChaNGa without the
application-level Tipsy optimizations. Figure [13b] shows the
speedup of the CkIO implementation over the manually opti-
mized implementation. As an additional datapoint, when run-

ning the benchmark on 64 nodes, CkIO shows around a 1.3x
speedup, consistent with the trend plotted. These results reaf-
firm that CkIO provides all the benefits as the hand-optimized
ChaNGa implementation, with two additional benefits: the first
is apparent in the slight performance improvement provided by
CkIO’s streaming implementation. Furthermore, the CkIO API
provides modularization and abstraction allowing easy tuning
of parameters, such as the number of intermediary readers. In
comparison to the hand optimized ChaNGa implementation,
which was built specifically to have one reader per PE, CkIO
enables the user to adapt to environments where one reader
per PE may not be optimal, depending on file size, system
configuration, and other factors.

Note that while ChaNGa is a good use case for mitigating
file system contention due to over-decomposition, it does
not provide an opportunity for computation/file input overlap
because all input is done prior to any computation.

V. CKIO EXECUTION TIME ANALYSIS

Lastly, in this section, we seek to understand the major
components of CkIO that contribute to the total execution time.
Within our system, there are 3 main sources that we wish to
study:

e 1/0 overhead

o Data permutation overhead

¢ Overdecomposition overhead

In our analysis, we base our study on the disjoint reads
program mentioned in Figure [4]

A. 1/0

In our experiments, we see that the disjoint reads program
is I/O bound, with most of the execution time being spent in
the application chares waiting for the buffer chares to finish
reading their disjoint sections of the file. Using the same setup
mentioned in Figure El, with 2° buffer chares and application
chares, the extra time spent redistributing the data from buffer
chares to clients is minimal.

B. Data Permutation

Another major component of our system is the transfer of
data from the buffer chare to a client. As seen in Figure [2]
the time to to transfer data across the network is orders of
magnitude faster than reading it from disk. We see this in
Figure |4l where the time using 2° buffer chares with 2° appli-
cation chares only takes 20 % more time than the naive charm
experiment, with the data permutation amounting to about
0.296 seconds. This illustrates the time that data permutation
adds, as the only difference between this experiment and the
naive reads is the extra step of sending the necessary data to
the application chares.

C. Overdecomposition

The third component that contributes to total execution
overhead is overdecomposition overhead. Overdecomposition
overhead occurs when there are a large amount of actors,
each requesting data, that results in more time being spent on

® ChaNGa with custom optimization
2% ChaNGa with CkIO
® ChaNGa without optimizations

Runtime (sec)
~N ~N IN)
%) %

°
°

N
>
[]

1 2 4 8 16
Number of Nodes

(a) ChaNGa under three input implementations

2.5

2.0 A

Speedup
-
w

1.04

0.5 A

0.0 -
1.0 2.0 4.0 8.0 16.0 32.0 64.0
Number of Nodes

(b) CKIO speedup in ChaNGa

Fig. 13: Runtime comparisons (a) and speedup (b) of the file input involved in a ChaNGa test code under three 10
implementations: (1) unoptimized ChaNGa, wherein each TreePiece reads directly from the file system; (2) the original ChaNGa
implementation, utilizing an application-level optimization that designates one reader TreePiece per PE; and (3) ChaNGa with
the CkIO implementation of the TipsyReader infrastructure. These results were produced on Bridges2 with 32 cores per node,
a 1GB input file, and 2'6 ChaNGa TreePieces. The speedup plot visualizes the speedup of ChaNGa with CKIO (3) over the
manually optimized ChaNGa implementation (2). Note that while runtimes plotted are the mean, the speedup plotted compares
the best iteration (min) of each implementation, to avoid capturing file system irregularities.

actions other than permuting the data or I/O. From Figure [4]
we see that the time to complete the program remains relatively
stable, even up to 256 clients per PE. This suggests that CkIO
contains relatively minimal overdecomposition overhead up to
large overdecomposition factors.

VI. FUTURE WORK

This work has laid the foundations for research into details
of HPC input in over-decomposed task-based systems. We next
describe areas that can be further explored to better understand
input performance in these systems.

A. Buffer Chare Selection Policy

Thus far, through experimentation, the user is able to easily
tune the number of buffer chares being used in order to
optimize the I/O performance of their application. However,
ideally we would like the CkIO library to optimize the number
of buffer chares by default based on metrics of the application
and machine (such as the file system being used, the intercon-
nect of the machine, number of cores, etc). This would allow
for fewer knobs the user is forced to think about and thus the
user would only have to focus on optimizing their application
code. For parallel file output, there has been significant amount
work in selecting the number of “aggregator” or buffer chares,
including the in ROMIO and MPI I/O [6] , as well as a search
and model based autotuning approach [4]. We expect this work
can be extended to cover our case of overdecomposed clients
and emphasizing file input, with its emphasis on dependent
tasks.

B. Topology Awareness and Buffer Chare Placement

Parallel I/O encounters further challenges in the context of
today’s wide variety of network topologies and I/O subsystem

layouts. Previous work investigates topology and data layout-
aware optimizations in the context of I/O abstractions to
further improve I/O performance, including the TAPIOCA
library, which provides topology-aware two-phase collective
I/O for MPI-IO [15]]. The intricacies of over-decomposition in
a topology-aware I/O abstraction may provide new opportuni-
ties for optimization. As the migration experiment illustrates,
locality of buffer chares plays a significant, although not
prohibitive, part in performance. Future work could explore
optimal buffer chare placement in light of client chare place-
ment as well as network topology.

C. Splintered I/O

Currently, each buffer chare reads the block of data it is
responsible for. So, read requests that require only a subsection
of the data being read will have to wait until the entire
block is read in, which can cause unnecessary increases in
the latency of some read requests. For example, if a buffer
chare is responsible for a 1GB chunk, but a read request
requires only the first 4MB, it will still have to wait for
the buffer chare to finish reading the full 1GB before that
request can be fulfilled. Instead, if the buffer chare read in
64MB chunks, the chunk in which that read request’s data
belong to would be available quickly, allowing the request to
be fulfilled quicker. Thus, exploring how such splintering I/O
might improve the latency of read request access patterns may
improve the performance of CkIO and other AMT I/O systems.
This issue is complicated if (for example) a buffer chare
is serving multiple workers from different processors, and
selecting the right sets of “splinters”, and potential multiple
concurrent I/O requests, will require further exploration.

D. New application patterns

Beyond the HPC applications, for which there is years of
experience in the community, the new class of applications
coming from parallel graph algorithms, data analytics, agent-
based simulations and machine learning present file input and
dependency patterns that are yet to be digested and analyzed.
As a library like CKIO gets used by task based systems for such
applications, we expect new application patterns to emerge,
which will require extension, specialization and optimization
of the CkIO approach.

VII. CONCLUSION

In this paper, we have illustrated the various challenges that
over-decomposed AMT systems face when doing file input.
We discuss how, by utilizing a 2-layer split-phase I/O scheme
based on asynchronous callbacks, we can speed up the input
performance of applications considerably, as well as allow for
different capabilities, such as speed ups and load balancing that
take into account the data that is being read. We implement
these ideas in CkIO Input, a library that allow for up to 2x
faster parallel reads in over-decomposed, task-based systems.
CkIO Input allows the user to pick a specified number of
buffer chares in order to maximize the input performance of
an application, while also allowing for efficient overlap of
computation and I/O. Additionally, CkIO Input supports client
object migratability, which is amenable to different strategies
to speed up input, as well as allowing for different load-
balancing strategies. We described the implementation of this
library in Charm++. Finally, we evaluated CkIO input on three
different microbenchmarks, as well as a cosmological N-body
simulation. We hope this research spurs further improvements
in file input for HPC applications, as well as exploration
of various strategies and decompositions schemes for AMT
systems performing parallel reads.

VIII. ACKNOWLEDGEMENTS

We thank Zane Fink and Ritvik Rao for their feedback on
this manuscript. We also thank Bridges 2 administrators and
the NSF ACCESS program for use of the Bridges2 machine.

REFERENCES

[1] Bilge Acun, Akhil Langer, Esteban Meneses, Harshitha Menon, Osman
Sarood, Ehsan Totoni, and Laxmikant Kalé¢. Power, reliability, and
performance: One system to rule them all. Computer, 49:30-37, 10
2016.

[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. Starpu: A unified platform for task scheduling on
heterogeneous multicore architectures. volume 23, 08 2009.

[3] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken.
Legion: Expressing locality and independence with logical regions.
pages 1-11, 11 2012.

[4] Babak Behzad, Suren Byna, Mr Prabhat, and Marc Snir. Optimizing i/o
performance of hpc applications with autotuning. ACM Transactions on
Parallel Computing, 5:1-27, 03 2019.

[5] Shawn Brown, Paola Buitrago, Edward Hanna, Sergiu Sanielevici, Robin
Scibek, and Nicholas Nystrom. Bridges-2: A platform for rapidly-
evolving and data intensive research. pages 1-4, 07 2021.

[6] Mohamad Chaarawi and Edgar Gabriel. Automatically selecting the
number of aggregators for collective i/o operations. pages 428437, 09
2011.

[7]

[8]

[9]

(10]

[11]
[12]

[13]

[14]

[15]

[16]

Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Im-
proved parallel i/o via a two-phase run-time access strategy. SIGARCH
Comput. Archit. News, 21(5):31-38, dec 1993.

Pritish Jetley, Filippo Gioachin, Celso Mendes, Laxmikant Kalé, and
Thomas Quinn. Massively parallel cosmological simulations with
changa. pages 1-12, 04 2008.

Zhihao Jia, Sean Treichler, Galen Shipman, Michael Bauer, Noah
Watkins, Carlos Maltzahn, Patrick McCormick, and Alex Aiken. Inte-
grating external resources with a task-based programming model. pages
307-316, 12 2017.

Hartmut Kaiser, Patrick Diehl, Adrian Lemoine, Bryce Lelbach, Parsa
Amini, Agustin Berge, John Biddiscombe, Steven Brandt, Nikunj Gupta,
Thomas Heller, Kevin Huck, Zahra Khatami, Alireza Kheirkhanan,
Auriane Reverdell, Shahrzad Shirzad, Mikael Simberg, Bibek Wagle,
Weile Wei, and Tianyi Zhang. Hpx - the c++ standard library for
parallelism and concurrency. Journal of Open Source Software, 5:2352,
09 2020.

Laxmikant Kale and Sanjeev Krishnan. Charm++: A portable concurrent
object oriented system based on c++. ACM Sigplan Notes, 28, 10 1995.
Sandeep Koranne. Hierarchical Data Format 5 : HDFS5, pages 191-200.
Springer US, Boston, MA, 2011.

Phil Miller, Shen Li, and Chao Mei. Asynchronous collective output
with non-dedicated cores. In Workshop on Interfaces and Architectures
for Scientific Data Storage, September 2011.

N-Body Shop. Tipsy: Code for display and analysis of n-body simula-
tions. Astrophysics Source Code Library, pages 11015—, 11 2011.
Francois Tessier, Venkatram Vishwanath, and Emmanuel Jeannot. Tapi-
oca: An i/o library for optimized topology-aware data aggregation on
large-scale supercomputers. In 2017 IEEE International Conference on
Cluster Computing (CLUSTER), pages 70-80, 2017.

Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and
collective i/0 in romio. pages 182—189, 03 1999.

	Introduction
	Background
	Overdecomposition
	Charm++
	Chares, Chare Arrays, and Groups
	Asynchronous Message-Driven Execution

	Related Work

	Rationale, API and Design
	Read Session
	Independent decomposition of file input tasks and application tasks
	Software Architecture and Implementation
	Director Chare
	Manager Group
	ReadAssembler Group
	Buffer Chares

	Asynchronous-Callback-centric API

	Evaluation
	Micro-benchmark Evaluation
	Disjoint reads: MPI vs CkIO
	Computation Overlap
	Migratability

	Evaluation on ChaNGa

	CkIO Execution Time Analysis
	I/O
	Data Permutation
	Overdecomposition

	Future Work
	Buffer Chare Selection Policy
	Topology Awareness and Buffer Chare Placement
	Splintered I/O
	New application patterns

	Conclusion
	Acknowledgements
	References

